Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 196: 107851, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400242

RESUMO

Entomopathogenic nematodes (EPNs) are susceptible to abiotic environmental factors including ultraviolet (UV) radiation, which affects the survival and efficacy. This study evaluated nanoparticle (NP) formulations for protecting Steinernema carpocapsae infective juveniles (IJs) from UV radiation. First, silica-NH2 NPs at oil-to-water ratios of 2:8, 3:7 and 4:6 were compared with Barricade Fire Gel (1 % and 2 %) and a water control (aqueous IJs) by exposing IJs to UV light (254 nm) for 0, 10 and 20 min. Barricade gel (especially 2 % Barricade) significantly improved IJs viability after UV treatment, while all three NPs had adverse effects on IJ viability after UV radiation. Subsequently, two silica (SiO2 basic and advanced) and one titania (TiO2) based formulations were tested with Barricade (1 % and 2 %) and a water control. The titania-NH2 NPs provided the highest UV protection, and IJ viability and virulence were not reduced even after 20-min UV. Except TiO2, only 2 % Barricade at 10-min UV and SiO2 basic at 20-min UV had lower IJ mortality than the water control. Only TiO2 formulated IJs caused higher insect mortality and infection levels than aqueous IJs after UV treatment. The UV tolerance of TiO2 was further examined by assessing the number of nematodes invading the hosts. Consistent with virulence tests, the number of invading nematodes in titania-NH2 NPs did not decrease after UV radiation for 10 or 20 min compared with the no-UV control. The anti-UV capability of titania-NH2 NPs has promise as a tool to enhance biocontrol efficacy of EPNs under field conditions.


Assuntos
Rabditídios , Raios Ultravioleta , Animais , Dióxido de Silício , Controle Biológico de Vetores , Água
2.
Colloids Surf B Biointerfaces ; 206: 111958, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34237526

RESUMO

A new formulation for biological pest control with significant UV protection capability has been developed in this research. The formulation is based on individual encapsulation of fungal conidia in an oil/water Pickering emulsion. The droplets size of the emulsions was tuned to meet the demands of single conidia encapsulation in the oil droplets. The emulsions are stabilized by amine-functionalized TiO2 (titania) nanoparticles (NPs). The droplet size, stability, and structure of the emulsions were investigated at different TiO2 contents and oil/water phase ratios. Most of the emulsions remained stable for 6 months. The structural properties of the Pickering emulsions were characterized by confocal microscopy and high-resolution cryogenic scanning electron microscopy (cryo-HRSEM). The presence of the TiO2 particles at the interface was confirmed by both confocal microscopy and cryo-HRSEM. Metarhizium brunneum-7 (Mb7) conidia were added to the emulsions. The successful encapsulation of individual conidia in the oil droplets was confirmed by confocal microscopy. The individual encapsulation of the conidia in the emulsions was significantly improved by dispersing the conidia in a 0.02 % Triton X-100 solution prior to emulsification. In addition, the bioassay results have shown, that exposure of the encapsulated conidia to natural UV light did not change their germination rates, however, the unprotected conidia demonstrated a dramatic decrease in their germination rates. These results confirm the UV protection capability of the studied emulsions.


Assuntos
Nanopartículas , Raios Ultravioleta , Agentes de Controle Biológico , Encapsulamento de Células , Emulsões , Metarhizium , Tamanho da Partícula , Titânio
3.
ACS Omega ; 3(10): 14294-14301, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411063

RESUMO

A new approach for single cell microencapsulation in an oil-in-water (o/w) Pickering emulsion is presented. The water/paraffin emulsions were stabilized by amine-functionalized silica nanoparticles. The droplet size of the emulsions was highly tunable, and ranged from 1 to 30 µm in diameter. The controllable droplet size along with the high colloidal stability of the Pickering emulsionswas harnessed to obtain single cell microencapsulation. Successful encapsulation of the conidia entomopathogenic fungus Metarhizium brunneum by the studied Pickering emulsions was confirmed via confocal laser scanning microscopy. The resulting systems were implemented to develop a novel biopesticide formulation for arthropod pest control. The conidia incorporated in the emulsions were applied to Ricinus communis leaves by spray assay. After drying of the emulsion, a silica-based honeycomb-like structure with an ordered hierarchical porosity is formed. This structure preserves the individual cell encapsulation. The successful single cell encapsulation has led to a high distribution of conidia cells on the leaves. The Pickering emulsion-based formulation exhibited significantly higher pest control activity against Spodoptera littoralis larvae compared to the control systems, thus making it a promising, cost-effective, innovative approach for tackling the pest control challenge.

4.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 1): 20-23, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28083126

RESUMO

In the title compounds, C11H13N3O2S, (I), and C16H15N3O2S, (II), the thio-semicarbazone group adopts an extended conformation. The acetate ester (I) crystallizes with two independent mol-ecules in the asymmetric unit. In the benzoate ester (II), the planes of the two aryl rings are inclined to one another by 46.70 (7)°. In both compounds, there is a short intra-molecular N-H⋯N contact present, forming an S(5) ring motif. In the crystals of both compounds, mol-ecules are linked via pairs of N-H⋯S hydrogen bonds, forming dimers with R22(8) ring motifs. The dimers are linked by N-H⋯S and N-H⋯O hydrogen bonds, forming slabs parallel to (01-1). In (I), there are N-H⋯π and C-H⋯π inter-actions present within the slabs, while in (II), there are only N-H⋯π inter-actions present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...